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Coupling between shallow water and solute �ow equations:
analysis and management of source terms in 2D
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SUMMARY

A two-dimensional model for the simulation of solute transport by convection and di�usion into shallow
water �ow over variable bottom is presented. It is based on a �nite volume method over triangular
unstructured grids. A �rst order upwind technique is applied to solve the �ux terms in both the �ow and
solute equations and the bed slope source terms and a centred discretization is applied to the di�usion
and friction terms. The convenience of considering the fully coupled system of equations is indicated
and the methodology is well explained. Three options are suggested and compared in order to deal with
the di�usion terms. Some comparisons are carried out in order to show the performance in terms of
accuracy and computational e�ort of the di�erent options. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the modelling of passive solute transport by shallow water �ows, it is very common to solve
the depth-averaged solute transport equation apart from the shallow water equations, that is,
using a decoupled algorithm in which, �rst, the �ow pattern is known and then the transport
in that �ow �eld is calculated [1, 2]. The reason for this is the physical assumption that,
for low concentrations, the solute dynamics does not in�uence the �ow behaviour, justifying
then the use of a simpler decoupled resolution algorithm. It is also frequent to express and
to use the solute transport equation in a non-conservative form, assuming that the velocities,
depth, and the bottom level vary smoothly in time and space. Also, when the di�usion is not
dominant, the transport problem can be considered as a linear advection problem in which
the advection velocity is the �ow velocity. The traditional numerical techniques applied to the
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non-conservative form of the decoupled solute transport equation are of the semi-Lagrangian
type and do not have, in general, the property of being conservative.
In many practical applications, however, when the properties of the �ow change fast in

time and=or in space, this approach can be inappropriate and lead to inaccurate solutions. The
necessity to adopt a conservative formulation not only for the water �ow but also for the solute
�ow equation arises, otherwise the numerical mass error generated may become important.
The advection velocity in this case depends both on the solute concentration distribution and
on the water depth. Some successful e�orts have been devoted to ensure the conservation
property in semi-Lagrangian schemes [3, 4] as applied to a single scalar equation. However,
this work has been based on a fully conservative formulation on �nite volumes applied to
the coupled system governing both the water and solute motion that solves the system on
triangular unstructured grids.
In this work, the coupling proves bene�cial in avoiding numerical instabilities in the solute

concentration when applied to complex situations. On the other hand, the coupling of the
equations and the application of an upwind scheme generate numerical source terms both
in the water and in the solute mass conservation equation. This leads to the necessity of a
complete upwind treatment of the bed variation source terms that ensures the best balance
in steady state cases. This has already been pointed out in many previous works in the
context of shallow water �ows [5, 6], but is even more obvious when extending the system
of conservation laws to include the solute concentration equation.
Furthermore, the �nite volume scheme used is explicit, which implies a restriction on the

time step size that can be severe in presence of di�usion. Various techniques are presented
and tested, where the time step is governed by a combination of the Peclet (Pe) and the
Courant–Freidrichs–Lewy (CFL) numbers. Finally, a splitting technique is adopted to solve
di�usion implicitly, avoiding small values of time step and allowing high accuracy, without
increasing the numerical di�usion.
In order to evaluate the performance of the numerical transport model in unsteady complex

situations for which there is not analytical solution, a two-dimensional laboratory dam break
test case has been taken from the literature. Having calibrated the shallow �ow model with
the supplied water depth experimental data [5], this �ow �eld is used as a basis for the solute
transport test cases. First the pure advection problem is presented to highlight the importance
of the conservative formulation in presence of discontinuous initial conditions. Then, di�erent
amounts of di�usion are assumed in order to evaluate, not only the in�uence of this term,
but also the convenience of using the three di�erent numerical strategies proposed to deal
with it. On the other hand, the presence of a variable bottom level is also considered starting
�rst by the basic requirement that the conservative method is able to keep constant an initial
condition of still water. Then, the unsteady behaviour over variable bottom is analysed.

2. GOVERNING EQUATIONS

2.1. 2D mathematical model

The two-dimensional shallow water equations, which represent mass and momentum conser-
vation in a plane, can be obtained by depth-averaging the Navier–Stokes equations. Neglecting
di�usion of momentum due to viscosity and turbulence, wind e�ects and the Coriolis term,
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they form the following system of equations [7]:

@U1
@t

+
@F1(U1)
@x

+
@G1(U1)
@y

=S1(x; y;U1) (1)

in which

U1 = (h; qx; qy)T

F1 =
(
qx;
q2x
h
+
gh2

2
;
qxqy
h

)T
; G1 =

(
qy;
qxqy
h
;
q2y
h
+
gh2

2

)T

where qx= uh and qy= vh. The variable h represents the water depth, g is the acceleration of
the gravity and (u; v) are the averaged components of the velocity vector u along the x and y
coordinates, respectively. The source terms in the momentum equations are the contributions
of bed slopes and the friction losses along the two coordinate directions,

S1 = (0; gh(S0x − Sfx); gh(S0y − Sfy))T

with the bed slopes in terms of the bottom level z,

S0x=−@z
@x
; S0y=− @z

@y

and the friction losses in terms of the Manning’s roughness coe�cient n [5]:

Sfx=
n2u

√
u2 + v2

h4=3
; Sfy=

n2v
√
u2 + v2

h4=3

In the context of a depth-averaged model, the depth-averaged concentration is of primary
interest, and it has been shown that, under special conditions, an advection–dispersion model
[8] can be de�ned as

@(h�)
@t

+ ∇̃(uh�)= ∇̃(Kh∇̃�) (2)

where � is the depth-averaged concentration, and K is an empirical dispersion matrix that
should not be confused with the turbulent di�usivity. In general, K incorporates dispersion
due to di�erential advection as well as turbulent di�usion [9].
Traditionally, both models (1) and (2) have been solved independently in a sequential form,

solving �rst the shallow water equations and next, in function of those �ow values, the solute
�ow equation. In order to improve the accuracy and conservation properties of the solution,
both models are coupled in a single system of equations, that becomes

@U
@t
+
@F(U)
@x

+
@G(U)
@y

=S(x; y;U) (3)
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where

U= (h; qx; qy; h�)T = (h; qx; qy; m)T

F=
(
qx;
q2x
h
+
gh2

2
;
qxqy
h
; mu

)T
; G=

(
qy;
qxqy
h
;
q2y
h
+
gh2

2
; mv

)T

S= (0; gh(S0x − Sfx); gh(S0y − Sfy); ∇̃(Kh∇̃�))T

The source term vector is split in three di�erent parts treated separately: bottom variations B,
di�usion term D, and friction term R: S=B+D+R

B= (0; ghS0x; ghS0y; 0)T

D= (0; 0; 0; ∇̃(Kh∇̃�))T

R= (0;−ghSfx;−ghSfy; 0)T

It is useful to rewrite (3) as

@U
@t
+ ∇̃E(U)=S(x; y;U) (4)

in which the �ux E=(F;G)T is linked to the conservative character of the system in the
absence of source terms, and in order to introduce the integral form of the equation over a
�xed volume �,

@
@t

∫
�
U d� +

∫
�
(∇̃E) d�=

∫
�
S d� (5)

Gauss’s theorem applied to the �ux integral gives

@
@t

∫
�
U d� +

∮
@�
(E · n) ds=

∫
�
S d� (6)

where @� denotes the surface surrounding the volume � and n is the unit outward normal
vector to the cell.

3. NUMERICAL METHOD

A cell-centred �nite volume method is formulated where all the dependent variables of the
system are represented as piecewise constants (�rst order). In the two-dimensional approach
presented in this work, the spatial domain of integration is covered by a set of triangular
cells, not aligned with the two coordinate directions. A discrete approximation of Equation (6)
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is applied in every cell �i at a given time so that the volume integrals represent integrals
over the area of the cell and the surface integrals represent the total �ux through the cell
boundaries. Denoting by Ui the average value of the conservative variables over the volume
�i at a given time, from Equation (6) the following conservation equation can be written for
every cell:

@Ui
@t
Ai +

∮
@�
(E · n) ds=

∫
�
S d� (7)

where Ai is the area of the cell �i.
A mesh �xed in time is assumed and the contour integral is approached by a sum over the

cell edges. In all of them, the normal �ux is evaluated via an upwind �ux di�erence splitting
technique

∮
@�i
(E · n) ds ≈

NE∑
k=1
(�Ek · nk)sk (8)

where k represents the edges index of the cell �i, NE is the total number of edges in the
cell (NE=3). The vector nk is the unit outward normal to edge k, sk is the length of the
side, and �Ek · nk is the numerical �ux di�erence. Upwind schemes are based on the idea
of discretizing the spatial derivates so that the information is taken from the side it comes.
When the source terms are present, it has previously been shown that the �ux derivates and
the source terms have to be discretized in a similar manner [5, 10]. The evaluation of �uxes
and sources at the same local state is important.
The mathematical properties of the hyperbolic system we are dealing with include the

existence of a Jacobian matrix, Jn, of the normal �ux (E · n) de�ned as

Jn=
@(E · n)
@U

=
@(F)
@U

nx +
@(G)
@U

ny

that can be expressed in terms of the conserved variables as

Jn=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 nx ny 0(
gh− q2x

h2

)
nx − qxqy

h2
ny

qy
h
ny +

2qx
h
nx

qx
h
ny 0

(
gh− q2y

h2

)
ny − qxqy

h2
nx

qy
h
nx

qx
h
nx +

2qy
h
ny 0

−
(qx
h2
nx +

qy
h2
ny
)
m

m
h
nx

m
h
ny

(qx
h
nx +

qy
h
ny
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The eigenvalues of Jn are a representation of the characteristic speeds

�1 = u · n+ c
�2 = u · n
�3 = u · n − c
�4 = u · n

(9)

where u=(u; v), n=(nx; ny) and c=
√
gh is the celerity of small amplitude surface waves.

The corresponding right eigenvectors are

e1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

u+ cnx

v+ cny

�

⎞
⎟⎟⎟⎟⎟⎟⎠ ; e2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−cny
cnx

2�

⎞
⎟⎟⎟⎟⎟⎟⎠ ; e3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

u− cnx
v− cny
�

⎞
⎟⎟⎟⎟⎟⎟⎠ ; e4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠ (10)

From its eigenvectors, two matrices P and P−1 can be constructed with the property that they
diagonalize the Jacobian Jn.

Jn=P�P−1

where � is a diagonal matrix with eigenvalues in the main diagonal. Those matrices are

P=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0

u+ cnx −cny u− cnx 0

v+ cny cnx v− cny 0

� 2� � 1

⎞
⎟⎟⎟⎟⎟⎟⎠ ;

P−1 =
1
2c

⎛
⎜⎜⎜⎜⎜⎜⎝

−u · n+ c nx ny 0

2(uny − vnx) −2ny 2nx 0

u · n+ c −nx −ny 0

−2�(c+ 2(uny − vnx)) 4�ny −4�nx 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(11)

The existence of the Jacobian matrix and the di�erential relation among conserved variables,
�uxes and Jacobian allows a local linearization in the form

�(E · n)= J̃RL�U
that can be used for the discretization of the normal �ux di�erence across the edge between
the computational cells �L on the left and �R on the right (normal vector at the edge pointing
from L to R). This requires the de�nition of an approximated �ux Jacobian, J̃RL, constructed
at the edges of the cells, taking into account the information provided by the right cell �R
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and the left cell �L. Note that subscript k is omitted. As suggested by Roe [11] the matrix
J̃RL has the same form as Jn but is evaluated at an average state de�ned by the quantities
ũ=(ũ; ṽ), c̃ and �̃, which must be calculated according to a set of the matrix properties:

(1) J̃RL= J̃RL(UR;UL).
(2) (E · n)R − (E · n)L= J̃RL(UR −UL).
(3) J̃RL has real eigenvalues and a set of eigenvectors.
(4) J̃RL= J̃RL(UL)= J̃RL(UR) if UL=UR.

In order to identify the intermediate states of the four involved variables, a new set of matrices
must be created [12]:

Z=
1√
h
U=(z1; z2; z3; z4)T; Z̃=

1
2
(ZR +ZL) (12)

and the following change of variable is de�ned:

�U=E · �Z (13)

where

E=

⎛
⎜⎜⎜⎜⎜⎜⎝

2z̃1 0 0 0

z̃2 z̃1 0 0

z̃3 0 z̃1 0

z̃4 0 0 z̃1

⎞
⎟⎟⎟⎟⎟⎟⎠ ; E−1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

(2z̃21)
−1 0 0 0

−z̃2(2z̃21)−1 z̃−11 0 0

−z̃3(2z̃21)−1 0 z̃−11 0

−z̃4(2z̃21)−1 0 0 z̃−11

⎞
⎟⎟⎟⎟⎟⎟⎠

It can also be seen that

�F=C1 · �Z; �G=C2 · �Z (14)

with

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

z̃2 z̃1 0 0

2c2z̃1 2z̃2 0 0

0 z̃3 z̃2 0

0 z̃4 0 z̃2

⎞
⎟⎟⎟⎟⎟⎟⎠ ; C2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

z̃3 0 z̃1 0

0 z̃3 z̃2 0

2c2z̃1 0 2z̃3 0

0 0 z̃4 z̃3

⎞
⎟⎟⎟⎟⎟⎟⎠

With the help of these matrices the following can be written:

�Fnx + �Gny=(C1nx +C2ny)�Z=(C1nx +C2ny)E−1�U= J̃RL · �U (15)

so that

J̃RL=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 nx ny 0

c̃2nx − ũ · nũ ũnx + ũ · n ũny 0

c̃2ny − ũ · nṽ ṽnx ṽny + ũ · n 0

−ũ · n�̃ �̃nx �̃ny ũ · n

⎞
⎟⎟⎟⎟⎟⎟⎠ (16)
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with

ũ=
uR

√
hR + uL

√
hL√

hR +
√
hL

; ṽ=
vR

√
hR + vL

√
hL√

hR +
√
hL

c̃=

√
g
(hR + hL)

2
; �̃=

�R
√
hR + �L

√
hL√

hR +
√
hL

(17)

The eigenvalues of J̃RL are

�̃1 = ũ · n+ c̃
�̃2 = ũ · n
�̃3 = ũ · n − c̃
�̃4 = ũ · n

(18)

and the corresponding eigenvectors

ẽ1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

ũ+ c̃nx

ṽ+ c̃ny

�̃

⎞
⎟⎟⎟⎟⎟⎟⎠ ; ẽ2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

−c̃ny
c̃nx

2�̃

⎞
⎟⎟⎟⎟⎟⎟⎠ ; ẽ3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

1

ũ− c̃nx
ṽ− c̃ny
�̃

⎞
⎟⎟⎟⎟⎟⎟⎠ ; ẽ4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠ (19)

Following the basic �ux di�erence procedure, the di�erence in vector U across the grid edge
is projected onto the matrix eigenvectors basis as

�U=UR −UL=
4∑
m=1
�mẽm (20)

where the expressions of coe�cients �m are

�1;3 =
hR − hL
2

± 1
2c̃
[((hu)R − (hu)L)nx + ((hv)R − (hv)L)ny − (ũnx + ṽny)(hR − hL)]

�2 =
1
c̃
[[((hv)R − (hv)L)− ṽ(hR − hL)]nx − [((hu)R − (hu)L)− ũ(hR − hL)]ny]

�4 = ((h�)R − (h�)L)− �̃(hR − hL + 2�2)

(21)

Therefore, the matrix J̃RL is replaced by its eigenvalues and eigenvectors in the product
J̃RL(UR −UL) in the form

J̃RL(UR −UL)=
4∑
m=1
�̃m�mẽm (22)
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In order to discriminate the sense of advection linked to the di�erent eigenvalues two matrices
�± are de�ned, where �±=(�± |�|)=2 so that

�(E · n) = J̃RL�U= P̃�̃P̃−1�U= P̃(�̃+ + �̃−)P̃−1�U

�(E · n) = P̃�̃−P̃−1�U︸ ︷︷ ︸
in-going waves

+ P̃�̃+P̃−1�U︸ ︷︷ ︸
out-going waves

(23)

For the updating, only the in-going contributions generated at the edges surrounding a cell are
of interest so that the contour integral of the numerical normal �ux is equivalent to the sum
of the in-going waves. The cell variation of U, neglecting the source terms, can be de�ned
as

@Ui
@t
Ai=−

NE∑
k=1

4∑
m=1
(�̃m−�mẽm)ni sk (24)

where it has been used that

P̃�̃−P̃−1�U=
4∑
m=1
�̃m− �mẽm (25)

and �−=(�− |�|)=2.

3.1. Bottom variations

Given the derivative form of the bed slope source terms, an upwind approach has been adopted
to model them in order to ensure the best balance with the �ux terms at least in steady state
cases. For every cell edge k of cell �i the discrete source term is decomposed into inward
and outward contributions as before

Bk =B+k + B
−
k

being

B±
k = P̃(I ± |�̃|�̃−)P̃−1BRL=

4∑
m=1
�m±ẽm (26)

The average value BRL is computed with

BRL=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

g
hL + hR
2

�zx

g
hL + hR
2

�zy

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
k

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

S2

S3

0

⎞
⎟⎟⎟⎟⎟⎟⎠
k

(27)

where the bed increments in each direction are

�zx=−(zR − zL)nx; �zy=−(zR − zL)ny (28)
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The expressions for the �− coe�cients are

�1− =
1
2c̃
(S2nx + S3ny)(1− sgn(�̃1))

�2− =
1
c̃
(−S2ny + S3nx)(1− sgn(�̃2))

�3− =
−1
2c̃
(S2nx + S3ny)(1− sgn(�̃3))

�4− =
−1
c̃
2�̃(S2ny − S3nx)(1− sgn(�̃4))

(29)

and, extending (24), the following partial updating rule is obtained for every cell:

U∗
i =U

n
i −

NE∑
k=1

4∑
m=1
((�̃m−�m − �m−)ẽm)ni

sk
Ai
�t (30)

The total contribution of the source term is made of the sum of the parts associated to inward
normal velocity at every edge k. Note that the superscript ∗ indicates predictor value.
The time step size in explicit schemes like (30) is limited for numerical stability reasons

and controlled by the Courant–Friedrichs–Lewy, CFL [5], dimensionless number

�t = CFL�tCFLmax

CFL6 1
(31)

with

�tCFLmax =min{�tCFLmax; i}i=1;NCELL

�tCFLmax; i =

{
min

(
min{AR; AL}
�̃m−
k dsk

)}
k=1;NE

(32)

3.2. Solute �ow di�usion

The integral of the di�usion term D is modi�ed applying again Gauss’s theorem,∫
�

∇̃(Kh∇̃�) d�=
∮
@�
(Kh∇̃�)n ds (33)

The contour integral is approached by a sum over the cell edges:

Di=
∫
�i

∇̃(Kh∇̃�) d�=
∮
@�i
(Kh∇̃�)n ds=

NE∑
k=1
(Kh∇̃�)knksk (34)

where (Kh∇̃�)k can be discretized as

(Kh∇̃�)k = KR +KL2
n min(h∗

R; h
∗
L)
(�R − �L)

d
(35)

where d is the distance between the centers of cells R and L. Note that h is evaluated as
min(h∗

R; h
∗
L) in order to avoid di�usion in dry=wet edges. Depending on how ��=(�R − �L)
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is evaluated and also on how the time step is chosen, various methods can be achieved. This
is discussed next.

3.2.1. Technique (a) Explicit scheme. �� is computed as ��n,

Un+1i =Uni −
NE∑
k=1

3∑
m=4
((�̃m−�m − �m−)ẽm)ni

sk
Ai
�t +

∫
�
Dni d�

�t
Ai

(36)

The stability in this case is determined by the combination of di�usion and advection. The
time step is limited by both the Peclet number, Pe, and the CFL number [13], so that

Pe+ CFL61 (37)

where Pe=
1
2
K · n�tPe
�x2

; �x= min
{
Ai
sk

}
i=1;NCELL; k=1;NE

This scheme is linked to the most restrictive time step. When only di�usion is considered
the time step is limited by Pe61.

3.2.2. Technique (b) Splitting technique and explicit di�usion. If a splitting technique is
adopted, as suggested by Karpik and Crockett [14] �rst, the advection step is solved by
means of (30), and a new value of �∗ in each cell is obtained. Then the di�usion is solved.
As the di�usion is computed separately, if this is made explicitly, the time step of the

second step is limited by the Pe number. To avoid decreasing the value of the global time
step, the following scheme is proposed. It essentially consists of accumulating di�usion steps
until the global time step given by the CFL condition is reached:

U1i =U
∗
i +

∫
�
D∗
i d�

�tPe
Ai
; D∗

i =D(U
∗
i )

...

Uji =U
j−1
i +

∫
�
D j−1
i d�

�tPe
Ai
; D j−1

i =D(U j−1
i )

for j=1; : : : ; NT where NT = int[�t=�tPe], and �nally,

Un+1i =UNTi +
∫
�
DNTi d�

(�t − NT�tPe)
Ai

(38)

3.2.3. Technique (c) Splitting technique and implicit di�usion. In this version of the splitting
technique, after solving the advection step by means of (30) and obtaining a new value of
�∗ in each cell, the value of �n+1 is computed discretizing the di�usion in an implicit way
as:

Un+1i =U∗
i +

∫
�
Dn+1 d�

�t
Ai

(39)
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The numerical model becomes unconditionally stable, as the resolution matrix is positive
de�ned, so �nally the time step used depends only on the value of CFL as if only advection
was involved.

3.3. Friction terms

The friction term R is discretized in a pointwise manner Ri=Rni , so the �nal updating step
consists of adding a friction term to the previously updated variable.

Un+1i =Un+1i +
∫
�
R d�

�t
Ai
=Un+1i +Rni�t (40)

4. PROPERTIES OF THE PROPOSED SCHEME

One advantage of considering the shallow water equations and the solute �ow equation as a
coupled set of equations is that the conservative character of the numerical method is preserved
in a simple way. When the solute �ow is considered as a decoupled equation and discretized
separately, the upwind technique leads to numerical di�culties. If an upwind �nite volume
approximation is applied to Equation (2), neglecting di�usion, the following must be written:

(h�)n+1 = (h�)n +
NE∑
k=1
(ũ� · n)−k ��k

sk
Ai
�t (41)

where again ��k =�R−�L, and, for conservation, in this case the following discrete advection
velocity results

ũ�k =
1
2

[√
h�RuR +

√
h�LuL√

h�R +
√
h�L

−
√
h�RuR −

√
h�LuL√

h�R −
√
h�L

]
(42)

which reduces to ũ�k = u only in trivial uniform �ow situations. It is obvious, �rst, that the
presence of a di�erence in the denominator of the second term can lead to numerical troubles
when

√
h�R ≈

√
h�L. On the other hand, this average advection velocity is useless in cases

of discontinuous water levels and zero water velocities despite the mass transfer predicted
by the water �ow equations. For instance, let us suppose one-dimensional dam break initial
conditions, over a �at bed,

h(x; 0)=

{
hL if x6 x0

hR if x¿ x0
; u(x; 0)=0; �(x; 0)=�0

with hL¿hR. In this case, the rule proposed in (41) as applied to the interface located at the
dam position (x0) leads to

(h�)n+1L =(h�)nL; (h�)n+1R =(h�)nR

and from (30) as applied to the water mass equation

hn+1L = hnL −�h; hn+1R = hnR +�h

where �h= hL − hR¿0. The �nal solute concentration at cells L and R is �n+1L ¿�0 and
�n+1R ¡�0, respectively, so an incoherent result is obtained.
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Instead, if the rule presented in (30) is applied it is simple to check that

hn+1L = hnL −�h; hn+1R = hnR +�h

(h�)n+1L = (h�)nL −�h�̃; (h�)n+1R =(h�)nR +�h�̃

where �̃=�0, which can be rearranged to

(h�)n+1L =(h−�h)�0; (h�)n+1R =(h+�h)�0

leading to �n+1L =�0 and �n+1R =�0 , the correct �nal state.

5. APPLICATIONS

5.1. Asymmetric dam break with �at bed

The coupled model (30) and the decoupled model (42), where the solute �ow equation is
treated independently, are going to be compared by means of a test case of solute transport
in a two-dimensional dam break simulation. The dam break set-up corresponds to an earlier
laboratory experiment designed and performed by a team at the University of A Coruña
(Spain) CITEEC in which a closed pool is divided in two parts by a section (Figure 1) where
a gate (dam) is suddenly open giving rise to a wave pattern far from the one-dimensional

Figure 1. Coruña’s laboratory set-up plan view.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:267–299



280 J. MURILLO ET AL.

Figure 2. Initial concentration level.

Figure 3. Isolines of concentration at times t=5; 10; 15 s, with a coupled system (left), and decoupled
resolution (right) of the pure advection problem.
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Figure 4. Isolines of concentration (left), and velocity vectors (right) at time t=5 s
with coupled system. Pure advection.

distribution. The bed is horizontal and the experiment was performed for an initial depth ratio
of 0:5=0:1m [15]. An initial distribution of solute, not present in the experiment, has been
assumed in this example. The initial concentration is a circular step distribution around the
gate so that there is a jump, shown in Figure 2, and de�ned as

�(x; y; t0 = 0)=

{
2 if r6 r0

1 if r¿ r0
with r=((x − 1:97)2 + (x − 1:35)2)1=2; r0 = 0:65m

The Manning’s roughness parameter n used is 0.01 according to the tank’s material. The
computing mesh contains 7875 cells. In order to evaluate the di�erences between both coupled
and decoupled advection models, the value of the dispersion coe�cient K is set to zero in both
cases. Figure 3 displays the numerical results for the concentration at various times. The dam
break wave evolution washes the initial concentration distribution to the side of the tank with
less initial water (upper side in the �gures). Although no experimental data are available for
validation in this case, it is important to note that signi�cant di�erences appear. The decoupled
method described by (42) generates unrealistic oscillations whilst the coupled method as in
(30) produces a more appropriate and smooth solute concentration map that follows very
closely the water �ow motion. The �ow motion has previously been calibrated by means of
the experimental data [15] and, in absence of di�usion, the transport is fully dominated by
the advection, that is, the �ow velocity �eld, as Figure 4 shows for the time t=5 s after the
gate removal using the numerical results obtained with the coupled methodology.

5.2. Asymmetric dam break with �at bed: di�usion techniques

The same geometry and initial conditions will be used to analyse the performance of the
proposed di�usion techniques. In this case the dispersion e�ect is included assuming that the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 49:267–299



282 J. MURILLO ET AL.

Figure 5. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:1.
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Figure 6. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:1.
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Table I. Computing time and ratios. kxx= kyy=0:1.

Simulation time (s) Ratio

Technique (a) 3857 5.67
Technique (b) 754 1.10
Technique (c) 680 1.00

coe�cient K, is as

K=

(
kxx kxy

kyx kyy

)
=

(
0:1 0

0 0:1

)

which results in the special relevance of the di�usion in the whole simulation. The coupled
system of equations is now used. Figure 5 displays the results when the same limit is imposed
on the time step condition for techniques (a) (imposing CFL+Pe=0:95) and (b) (CFL=0:95)
as described in earlier sections.
In Figure 6, the results when the same limit is imposed on the time step, using techniques

(a) (CFL+ Pe=0:95) and (c) (CFL=0:95) are also shown. Table I contains the computing
times needed in each case, using a Pentimum IV, and the time ratios. We want to show that if
technique (c) (implicit di�usion) is applied using the same time step limit as the one imposed
in (a), the method leads to less di�usive solutions.
Due to the relative weight of the di�ussion coe�cient, there are important di�erences in the

computing time when techniques (b) or (c) are used instead of (a). Technique (a) leads to an
excessive computing time and, although technique (b) consumes almost the same computing
time as technique (c), the results prove that, not only technique (c) is the less di�usive
method, but it is also the most economic in CPU time. Despite being implicit, technique (c)
proves to be the less di�usive option.
In the following case, the value of the coe�cient K is decreased one order of magnitude:

K=

(
kxx kxy

kyx kyy

)
=

(
0:01 0

0 0:01

)

Hence, the resulting time step computed by means of the advection step and the one involving
di�usion have approximately the same size. Hence the di�erences in the total computing time
between the proposed techniques are negligible.
Figure 7 displays the results when the same limit is imposed on the time step condition for

techniques (a) (imposing CFL + Pe=0:95) and (b) (CFL=0:95) as described before. The
results when the same limit is imposed on the time step, using techniques (a) (CFL+Pe=0:95)
and (c) (CFL=0:95) are shown in Figure 8. The computing time used by each technique is
shown in Table II. In this case the di�erences in the results obtained using techniques (a),
(b) or (c) are almost negligible.
As third example, the coe�cient K is chosen as

K=

(
kxx kxy

kyx kyy

)
=

(
0:001 0

0 0:001

)
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Figure 7. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:01.
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Figure 8. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:01.
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Table II. Computing time and ratios. kxx= kyy=0:01.

Simulation time (s) Ratio

Technique (a) 693 1.02
Technique (b) 689 1.01
Technique (c) 680 1.00

In this case the di�usion is almost negligible compared with the advection, therefore the
time step size is controlled by advection. Figure 9 displays the results when the same limit is
imposed on the time step condition for techniques (a) (CFL+Pe=0:95) and (b) (CFL=0:95)
as described before. The results when the same limit is imposed on the time step, using
techniques (a) (CFL+Pe=0:95) and (c) (CFL=0:95) are shown in Figure 10. The computing
time used by each technique is shown in Table III. In this case no di�erences in the results are
found. Figures 9 and 10 show no di�erences between techniques (a), (b) and (c) as expected.
Also no di�erences are found in the computing time.
As the di�usion coe�cient can vary in a wide range, we can conclude that the

proposed technique (c) is the best choice, since it reduces the necessary number of time
steps when the di�usion term is important, providing the less di�usive numerical results
in general, and shows good agreement with the fully explicit methodology in cases
of negligible di�usion.

5.3. Steady state in presence of source terms

The following test case is intended to study the quality of the numerical results in presence
of important bed variations. Therefore, a variable bed is set within the previous example
geometry. The assumed bottom elevation is given by the following function:

z(x; y)=−0:3
(
1− sin

(
d(x; y)
2:6

2�
))

where the results are given in meters and d=(x2 + y2)1=2. Figure 11 displays two plots of
the resulting bottom elevation.
This numerical test is oriented to evaluate the ability of the numerical approaches to

preserve an initial condition of still water with uniform concentration in presence of the
mentioned bed variations. This is a basic but compulsory test case for conservative
methods. In this case a uniform zero velocity, water level, h + z=0:1m, and a uniform
value for the concentration �=2 are initially imposed over the whole domain. When the
system is coupled and the source terms are discretized following the scheme proposed in
(30), the system is able to keep a uniform value for the solute concentration constantly in
time. But, if only the coupling of the �uxes is used as in (20) and the source terms are not
carefully treated, oscillations in the solute concentration appear from the beginning. Figure
12 displays the results for both cases after one time step, and how equilibrium is already
violated by not considering the complete upwind treatment of the source terms related to the
bed slope.
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Figure 9. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:001.
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Figure 10. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:001.
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Table III. Computing time and ratios. kxx= kyy=0:001.

Simulation time (s) Ratio

Technique (a) 661 1.00
Technique (b) 661 1.00
Technique (c) 661 1.00

Figure 11. Bottom elevation.

Figure 12. Solution for concentration after one time step with upwind treatment of all the source terms
(left) and without including upwind treatment of all the source terms (right).
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Figure 13. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:1.
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Figure 14. Isolines of concentration at times t=5; 10; 15 s, computed with technique imposing
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:1.
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Table IV. Computing time and ratios. kxx= kyy=0:1. Variable bed.

Simulation time (s) Ratio

Technique (a) 3782 4.04
Technique (b) 859 1.00
Technique (c) 858 1.00

5.4. Asymmetric dam break with variable bed

As a �nal example, the complete problem of propagation including advection and di�u-
sion over a variable bed is analyzed. The bed level variations presented in the previous
section, and the initial water levels, dispersion coe�cients and initial solute concentration
used in Section 5.2 are put together. We shall adopt the coupled system of equations and
discretize all the source terms in an upwind manner assuming these are the best options.
Then we would like to compare the performances of the alternatives o�ered for
the di�usion.
First, the value of K is set equal to

K=

(
kxx kxy

kyx kyy

)
=

(
0:1 0

0 0:1

)

The results for CFL+Pe=0:95 using (a) and CFL=0:95 using (b) are shown in Figure 13.
The results for CFL + Pe=0:95 using technique (a) and CFL=0:95 using technique

(c) are shown in Figure 14. The computing time consumed by each technique is shown in
Table IV. Again, the time step is strongly dominated by the di�usion and, as in
Section 5.2, the conclusion is that technique (c) provides both the less di�usive results and the
fastest simulation.
If the value of K is decreased ten times

K=

(
kxx kxy

kyx kyy

)
=

(
0:01 0

0 0:01

)

the results for CFL + Pe=0:95 using technique (a) and CFL=0:95 using (b), are shown
in Figure 15. The results for CFL+ Pe=0:95 in (a) and CFL = 0.95 in (c) are shown in
Figure 16. The computing times are shown in Table V. The time step size is dominated both
by advection and di�usion so almost no di�erences are found when techniques (a), (b) or (c)
are used.
When the value of K is reduced to

K=

(
kxx kxy

kyx kyy

)
=

(
0:001 0

0 0:001

)

the time step is controlled by the advection, and no di�erences are found when using tech-
niques (a), (b) or (c). The results are displayed on Figures 17 and 18. The computing times
are shown in Table VI.
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Figure 15. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:01.
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Figure 16. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:01.
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Table V. Computing time and ratios. kxx= kyy=0:01. Variable bed.

Simulation time (s) Ratio

Technique (a) 868 1.00
Technique (b) 865 1.00
Technique (c) 861 1.00

Figure 17. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:001.
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Figure 18. Isolines of concentration at times t=5; 10; 15 s, computed with technique using
CFL+ Pe=0:95 (left) and technique (right) with CFL=0:95. kxx= kyy=0:001.
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Table VI. Computing time and ratios. kxx= kyy=0:001. Variable bed.

Simulation time (s) Ratio

Technique (a) 852 0.99
Technique (b) 858 1.00
Technique (c) 858 1.00

6. CONCLUSIONS

A numerical model based on the conservative form of the coupled system of two-dimensional
depth-averaged shallow water �ow and solute transport �ow has been presented. In order
to build a robust and e�cient model able to deal with steady and unsteady �ow even in
presence of discontinuities of both solute concentration and water depth, a �rst order upwind
�ux di�erence scheme (Roe’s scheme) has been used for the solution of the frictionless
non-di�usive part of the coupled system. A numerical coupling appears among the water
and solute equations arising from the bottom level variation source terms. The rede�nition
of the Jacobian matrix not only avoids numerical oscillations when a constant concentration
is present, it also reinforces the necessity of modelling bottom variations by means of an
upwind approach. The model guarantees a steady state for the shallow water equations and
also ensures that no solute exchange is produced when dealing with pure advection, in case
of zero water velocity over a non-uniform bed level.
The numerical tests performed have demonstrated the importance of including in the same

set the shallow water equations and the solute �ow in a conservative form in case of pure
advection in presence of water surface discontinuity over �at bed. It has also been shown that
the new Jacobian matrix allows a whole treatment of the source terms leading to the correct
conservation of the equilibrium state in case of variable bed.
A centred discretization has been applied to the di�usion terms and three di�erent techniques

have been considered for their time integration: fully explicit and coupled to the advective part
in a single time step (a), explicit following an operator splitting algorithm (b) and implicit
following an operator splitting algorithm (c). Among them, technique (c) is recommended as
this cocktail leads to less di�usive solutions with less computational e�ort.
The conservation property in a numerical solution is not only related to the numerical

scheme used but also to the discretization adopted at the boundaries. In all the examples
presented, boundaries were assumed to be solid walls, hence their discretization was trivial
and has not been mentioned. One of the goals to achieve as future work is the correct
discretization of open boundary conditions in order to allow the inlet and outlet of solute mass
in a conservative form. As a second objective, the presence of variable solute concentration
in transient problems characterized by wetting=drying fronts, will be studied.
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